PHD STUDENT, UNIVERSITY OF HAIFA, HAIFA, ISRAEI Room 558, Port Campus, University of Haifa, Haifa, Israel ≤ shibam.math@gmail.com | A ShibamCrS

m GHOSH

I have submitted my PhD thesis in the Department of Computer Science at the University of Haifa, under the supervision of Prof. Orr Dunkelman. I began my doctoral studies in October 2020. Before this, I completed my master's thesis as a research intern at INRIA, Paris, under the guidance of Anne Canteaut and Léo Perrin.

Research Interests

- Cryptanalysis of Symmetric-key Primitives
- Symmetric-key Primitive Design
- Lightweight Cryptography
- White-box Cryptography
- Provable Security

Indian Statistical Institute

Education

Master of Technology in Cryptology and Security	2018 - 2020
Presidency University	Kolkata, India
Master of Science in Mathematics	2015 - 2017

Krishnagar Government College BACHELOR OF SCIENCE IN MATHEMATICS

Research Experience

University of Haifa

PhD Student

- Supervisor: Prof. Orr Dunkelman
- My PhD research has centered on cryptanalysis, focusing on the design and analysis of symmetric primitives.
- A significant portion of my work is dedicated to the algebraic cryptanalysis of these primitives. Some key contributions:
 - An enhanced Fast Fourier Transform-based key-recovery attack on 6-round AES.
 - Algebraic cryptanalysis of NIST LwC candidates Ascon, KNOT, and TinyJAMBU.
 - Distinguishers derived from the structural symmetry of SHA3, Xoodyak, and the Belarusian standard bash.
 - Division property-based fault attacks on the GIFT and Present ciphers.
- In addition to cryptanalysis, I have co-designed the tweakable block cipher QARMAv2, tailored for memory protection.
- My research also extends into the area of re-keying techniques, where I have analyzed the security of the IETF/ISO standard Advanced CryptoPro Key Meshing (ACPKM) internal rekeying technique, widely used in Russian variants of TLS and CMS.

Institut national de recherche en sciences et technologies du numérique (INRIA)

RESEARCH INTERN

- Supervisor: Anne Canteaut, Léo Perrin
- Master's Dissertation: On the QIC of guadratic APN functions (available online here)
- My master's research focused on cryptographic Boolean functions, with particular emphasis on the Big APN Problem.
- Our goal was to generate quadratic APN functions of size ≥ 8 .
- The search for APN permutations and their classification has been an open challenge for over 25 years.
- Our core approach involved representing a quadratic vectorial Boolean function using a cubic structure called a Quadratic Indicator Cube (QIC) and identifying the criteria associated with this cube that are necessary and sufficient for a function to be APN.

Haifa, Israel Oct 2020 - Dec 2024

Krishnagar, India

Kolkata, India

2012 - 2015

Paris, France

Jan – July, 2020

Publications

JOURNAL ARTICLES

- 1. Sahiba Suryawanshi, Shibam Ghosh, Dhiman Saha, and Prathamesh Ram. Simple Vs Vectorial: Exploiting Structural Symmetry to Beat the ZeroSum Distinguisher Applications to SHA3, Xoodyak and Bash. *IACR Cryptol. ePrint Arch.*, page 52, 2024 (Accepted to Design, Codes and Cryptography, DOI).
- 2. Roberto Avanzi, Subhadeep Banik, Orr Dunkelman, Maria Eichlseder, Shibam Ghosh, Marcel Nageler, and Francesco Regazzoni. The QARMAv2 Family of Tweakable Block Ciphers. *IACR Transactions on Symmetric Cryptology*, 2023(3):25–73, 2023 (DOI)
- 3. Orr Dunkelman, Shibam Ghosh, and Eran Lambooij. Practical Related-Key Forgery Attacks on Full-Round TinyJAMBU-192/256. *IACR Trans. Symmetric Cryptol.*, 2023(2):176–188, 2023 (DOI)
- 4. Orr Dunkelman, Shibam Ghosh, and Eran Lambooij. Attacking the IETF/ISO Standard for Internal Rekeying CTR-ACPKM. *IACR Trans. Symmetric Cryptol.*, 2023(1):41–66, 2023 (DOI)

CONFERENCE PAPERS

- 1. Ravi Anand, Shibam Ghosh, Takanori Isobe, and Rentaro Shiba. Quantum Key Recovery Attacks on 4-Round Iterated Even-Mansour with Two Keys. In *Proceedings of Information Security Conference (ISC)*, volume 15257 of *Lecture Notes in Computer Science*, pages 87–103. Springer, 2024 (DOI)
- 2. Orr Dunkelman, Shibam Ghosh, Nathan Keller, Gaëtan Leurent, Avichai Marmor, and Victor Mollimard. Partial Sums Meet FFT: Improved Attack on 6-Round AES. In *Advances in Cryptology – EUROCRYPT 2024*, pages 128–157. Springer, 2024 (DOI)
- 3. Anup Kumar Kundu, Shibam Ghosh, Dhiman Saha, and Mostafizar Rahman. Divide and Rule: DiFA -Division Property Based Fault Attacks on PRESENT and GIFT. In *ACNS (1)*, volume 13905 of *Lecture Notes in Computer Science*, pages 89–116. Springer, 2023 (DOI)
- 4. Orr Dunkelman, Shibam Ghosh, and Eran Lambooij. Full Round Zero-Sum Distinguishers on TinyJAMBU-128 and TinyJAMBU-192 Keyed-Permutation in the Known-Key Setting. In *INDOCRYPT*, volume 13774 of *Lecture Notes in Computer Science*, pages 349–372. Springer, 2022 (DOI)
- 5. Nilanjan Datta, Avijit Dutta, and Shibam Ghosh. INT-RUP Security of SAEB and TinyJAMBU. In *IN-DOCRYPT*, volume 13774 of *Lecture Notes in Computer Science*, pages 146–170. Springer, 2022 (DOI)
- 6. Shibam Ghosh and Orr Dunkelman. Automatic Search for Bit-Based Division Property. In *LATINCRYPT*, volume 12912 of *Lecture Notes in Computer Science*, pages 254–274. Springer, 2021 (DOI)
- 7. Shibam Ghosh and Léo Perrin. Some Experimental Results on Quadratic APN Functions. In *Boolean Functions and their Applications (BFA) 2021*, 2021 (available online here)

UNDER SUBMISSION

- 1. Nilanjan Datta, Avijit Dutta, Shibam Ghosh, and Hrithik Nandi. Optimally secure TBC based accordion mode. Cryptology ePrint Archive, Paper 2024/2053, 2024
- 2. Anup Kumar Kundu, Shibam Ghosh, Aikata Aikata, and Dhiman Saha. ToFA: Towards fault analysis of GIFT and GIFT-like ciphers leveraging truncated impossible differentials. Cryptology ePrint Archive, Paper 2024/1927, 2024
- 3. Automatically Verifying Differential Characteristics and Learning Key Conditions (Major Revision, FSE 2024)
- Differential Cryptanalysis of the Reduced Pointer Authentication Code Function used in Arm's FEAT_PACQARMA3 Feature (Major Revision, FSE 2024)

Research Talks Delivered

2024Partial Sums Meet FFT: Improved Attack on 6-Round AES, Eurocrypt, 2024Zurich, Switzerland2023Attacking the IETF/ISO Standard for Internal Re-keying CTR-ACPKM, FSE, 2023Kobe, Japan2022Full Round Zero-Sum Distinguishers on TinyJAMBU-128 and TinyJAMBU-192, Indocrypt, 2022Kolkata, India2021Automatic Search for Bit-based Division Property, Latincrypt, 2021Vitual2021Some Experimental Results on Quadratic APN Functions, BFA, 2021Vitual

Technical Projects

Improved Attack on 6-Round AES

PRACTICAL ATTACKS

- I have presented a Fast Fourier Transform-based key-recovery attack on 6-round AES at Eurocrypt 2024.
- The attack is fully implemented in C and verified on Amazon AWS servers.
- The source code is available in my git and published in IACR artifact.

Forgery Attacks on NIST Lightweight Crypto Finalist TinyJAMBU

PRACTICAL ATTACKS

- I have implemented a practical related-key forgery attack on the TinyJAMBU-v2 with 256/192-bit keys in C.
- Part of this work was published at FSE 2023 and the source code is available in my git.

Automatic Tools For Algebraic Attacks

TOOLS IN CRYPTANALYSIS

• I have prepared Pyhon-based automatic tools for cryptanalysis of NIST lightweight ciphers using MILP, SAT, and CP, available in my git.

Automatic Tool for Verifying Differential Characteristics

TOOLS IN CRYPTANALYSIS

- This project involves developing a tool using publicly available #SAT solvers that thoroughly verifies differential characteristics.
- The tool calculates the expected probability of differential characteristics while considering the cipher's key schedule.
- This tool also estimates the size of the key-space that validates the characteristic and deduces conditions for these keys.
- The paper is being submitted and the tool will appear soon in my git.

Ongoing Projects

Security Analysis of Arm's Pointer Authentication Code (PAC)

PRACTICAL ATTACKS

- This project focuses on the Qarma cipher, utilized in the Arm A-profile and M-profile architectures as a Pointer Authentication Code.
- Pointer Authentication is important to mitigate Return-Oriented Programming (ROP) exploits.
- We are preparing an SAT-solver-based automatic tool to search differential properties of Qarma.

White-Box Secure Cipher

Primitive Design

- We aim to propose an Even-Mansour variant of white-box secure cipher family
- The main objective is to achieve space-hardness and longevity security in specific adversarial environments.

Embedded Code Encryption

PRIMITIVE DESIGN

- We aim to propose a low-latency block cipher intended to support external memory encryption.
- My primary contribution is in the analysis of the block cipher.

Teaching Experience _____

University of Haifa

TEACHING ASSISTANT

- Introduction to cryptography, Spring Semester, 2022 (lecturer in charge: Prof. Orr Dunkelman)
- Introduction to cryptography, Spring Semester, 2023 (lecturer in charge: Prof. Orr Dunkelman)
- Introduction to cryptography, Spring Semester, 2024 (lecturer in charge: Prof. Orr Dunkelman)
- Israeli School on Biometrics, 2024 (lecturer in charge: Prof. Orr Dunkelman)

C

C

G

20

20

Other Professional Activities

Reviewer

- Asiacrypt 2024
- Selected Areas in Cryptography (SAC) 2024
- Designs, Codes and Cryptography (DCC) 2024, 2023, 2022

Awards_____

2021	Israeli Science Foundation (ISF) Fellowship, Israeli Science Foundation (ISF)	Haifa, Israel
2020	Data Science Research Center (DSRC) Fellowship, University of Haifa	Haifa, Israel
2020	Awarded departmental-topper prize, Indian Statistical Institute	Kolkata, India
2019	Rank 88 in National Eligibility Test, Council of Scientific and Industrial Research (CSIR), India	Kolkata, India

Technical Skills_____

G	C, C++	•••	
ę	python, SageMath	•••	
B	Rust	•••	
•	Git	•••	
\$	Qiskit	•••	

Languages_____

NativeBengaliFluentEnglish, Hindi